
 1

The Emergence of Accidental Autonomy

Alastair Faulkner† and Mark Nicholson‡

†Abbeymeade Limited, ‡University of York

Abstract – The Boeing 737 MAX - Manoeuvring Characteristics Augmentation
System (MCAS) accidents have demonstrated how cumulative factors may lead to
accidental autonomy. Accidental autonomy emerges when differences in models
compete over resources and control. In the operational domain, one manifestation
is failure at the human-machine interface. Subtle, incremental changes in techno-
logy allied with downward economic pressures encourage reuse to create the sys-
tem safety property of additionality. Cumulative incremental changes occur that
when taken together, are safety significant. Reuse of process, product or both
gives rise to inappropriate design trade-offs. Assumptions about the completeness
of process, design, implementation or context may lead, in extreme circumstances,
to the creation of accidental autonomy - systems without human oversight that im-
plement safety-related functionality or services.

Oversight, assessment and approval of systems dependent on reuse are reliant
on the familiarity of the assessor with the reused elements within their operational
and use context. Incomplete, inadequate understanding and failures of compre-
hension, along with the allure of fast software development, create the potential
for accidental autonomy.

1 Introduction

Systems engineering is subject to several capability and economic pressures. This
has driven Systems Engineers to create systems from generic components. To be-
come generic components are designed to depend on data to be configured, char-
acterised and parameterised to the required behaviour. This data dependency is
also evident in the broader system, its subsystems, interfaces and shared overlap-
ping datasets.

Our collective understanding of autonomy [1] is bound to context [2] and era.
It is context that gives legitimacy to a person or systems actions, the facts or pro-
cesses of doing something, typically to achieve an aim. [3] Automation often first
appears as an aid to support existing practice. These aids are developed and
evolve to support and reinforce changes – driving uniformity and consistency, but
not necessarily improving reliability, performance or resilience. [4] The overall
impact on the working environment is a dramatic increase in the volume of digital

© Alastair Faulkner and Mark Nicholson 2020.
Published by the Safety-Critical Systems Club. All Rights Reserved

2 Alastair Faulkner and Mark Nicholson

data and flow of that digital data around system elements and a concomitant de-
crease in understanding of the context and limitations of this autonomy. [5]

The potential for accidental autonomy arises when changes are implemented as
‘islands’ of functionality to support identified activities. We use the word acci-
dental [28] as happening by chance, unintentionally, or unexpectedly. Existing
system interfaces characterise the boundaries of these new functionalities. Oper-
ators become reliant on the autonomous actions of systems (and its assumed func-
tional model). Even if they can intervene, they often do not, as they tend to trust
the technology.

At the same time, a reliance on automated decision-making increases. At the
lowest level of autonomy, [6] computers offer no assistance; they facilitate in-
formation acquisition. Later, they offer a set of decision alternatives, facilitating
analysis. They provide increasing amounts of support for the decision-making
process itself. The operator has a restricted time to overrule the autonomous de-
cision before an action. Finally, the highest levels of autonomy provide imple-
mentation with no capability for the human to overrule and little, if any, informa-
tion provided on what actions the autonomy has undertaken.

Safety risk arises where the operators understanding of the system and the role
of autonomy is incomplete. A classic human-machine interaction failure may res-
ult. Clean design and efficiency are frequently used to justify autonomy.
Autonomy may correct an underlying instability in the system model or design. It
becomes accidental autonomy when its actions arise from incomplete design, im-
plementation or its use is outside an acceptable design envelope with respect to
safety. Further, it may induce additional human failures due to mismatches
between the human mental model, the goals of autonomy, and what is detected, by
both parties, of the real-world context.

Systems Engineering has progressed to the point where machines have the cap-
ability to undertake high-level decisions and enact consequent actions without re-
course to direct human input. As a result, we should not assume the presence of a
user; instead, we employ the term actor as ‘an individual, entity, or combination of
product (including autonomy), people, and process’. This raises the question of
supervision [11], and to what extent humans remain involved in operational de-
cisions.

2 System as the Fundamental Concept

A system is a (purposeful [7]) set of things working together as part of a mechan-
ism or an interconnecting network; a complex whole. [8] Systems operate in in-
creasingly open environments. These environments and the data exchanged
within them are homogeneous or heterogeneous or a mixture of both. The nature
of the environment influences the formation of the system boundary (porous or se-
cure (as defined by an appropriate security model)). For modern complex sys-
tems, it is common to present several views of the system either across many

The Emergence of Accidental Autonomy 3

sheets (possibly in a hierarchy) or to separate physical realisations from abstract
(logical) models. Therefore, reviewing any classification system requires an ap-
preciation of the context, including the role of the actors within each viewpoint.

Systems of Systems (SoS) bring together a set of systems for a task that none
of the systems can accomplish on its own. Each constituent system keeps its man-
agement, goals, and resources while coordinating within the SoS and adapting to
meet SoS goals. [9] Interconnected SoS give rise to accidental tasks associated
with the mapping and representation of abstract entities and mapping of those en-
tities onto the constraints of the solutions. [10] One implementation uses Internet
of Things (IoT) devices as generalised platforms, enabling them to be adapted and
configured to a range of solution areas. Often these include a highly capable Op-
erating System (OS) that can provide a full range of communication and computa-
tional services. They are configured (and characterised) to a particular task (or
range of tasks) through data. An additional dimension to SoS would be to add
(joiners) or remove (leavers) to the system. A joiner introduces additional capab-
ilities, capacities and tasks. A leaver removes them. The system is modified (ad-
apted) to reflect these changes in the service catalogues.

There are several interrelated models at play here for a complex system.

 Security – one starting point requires all system entities to be assigned an iden-
tity so that an actor’s access privileges can be assigned (and revoked). This
leads to consideration of the relative authorities between the system and the
actors that use and are served by the system.

 Maintenance – it is common to use Permit to Work (tickets) as part of a formal
maintenance procedure to isolate physical plant and equipment. How should
autonomy and their respective services be controlled while maintenance is be-
ing enacted? How will the system be reconfigured to manage reduced capabil-
ity whilst one or more systems (and their associated (and (mutually) dependent
services)) are maintained?

 Operational – how big, complex or complicated should a system be before the
risks associated with its failure demand the creation of an operational model?
It is common to consider operational modes during system safety management
activities. An operational strategy should be used to direct and inform the cre-
ation and maintenance of the operational model. Issues associated with size
and complexity require that a decision model is constructed and maintained
over the operational model.

 Safety - in an ideal world, control and protection function differentiation would
be applied universally to function, flow and service. The desirable safety fea-
tures of hardware and software are well established. It is not clear that such re-
quirements are applied to services. Issues associated with size and complexit-
ies require that a services model is constructed and maintained.

 Risk - in systems which are dependent on autonomy, the form and nature of
risks are multi-dimensional, crossing many discipline and system boundaries.
Many of these boundaries are indistinct. The risks associated with reliance on
autonomy require the reappraisal of existing risk models.

4 Alastair Faulkner and Mark Nicholson

 Supervision – the action of supervising someone or something. [11] A super-
visory model is a scheme for specifying and enforcing supervisory policies.

The use of SoS and IoT technologies means that an integrated risk model across
these models is required to address residual and unsecured functionality.

3 Autonomy

Autonomy [1] is not new. It is used to describe human political activity, for a re-
gion ‘having its own laws’. In the modern sense, autonomy is readily adapted to
address systems capable of operating without direct human control [12] but vary-
ing degrees of human supervision or oversight. At one extreme automaton [13] is
confined to actions described by a predetermined set of coded instructions. At the
other are learning systems that adapt their behaviour in response to changes in the
operating environment – its context. [2]

It is context – ‘the circumstances that form the setting for an event, statement,
or idea, and in terms of which it can be fully understood’ [2], that provide the
basis of this paper. Context is not limited to the operational environment. For the
engineered system, it reflects the designer’s expectation of the operational envir-
onment. This position is further complicated by what learning systems ‘under-
stand’ as the basis for the formulation of its response.

Consider an automatic [14] washing machine; it works by itself with little or no
direct interaction. The use or introduction of multiple automatic devices into an
existing context creates automation. [15] These definitions contain an implicit ex-
pectation of a static context. That, the context is known, and if it changes at all, it
changes slowly under controlled conditions. What if, a new generation of auto-
matic devices, providing a form-fit-function [16] replacement, are introduced
based on IoT. Suppose the system has unused capability and capacity. An unse-
cured ‘discovery’ function recognises other IoTs and connects to this residual and
unsecured functionality. Taking a SoS perspective, this represents one or more
emergent properties [17], possibly with unintended consequences.

Autonomy becomes multi-dimensional under Industry 4.0: [18, 19]

 The vertical integration of flexible and reconfigurable systems within busi-
nesses;

 The horizontal integration of inter-company value chains and networks;
 The product life-cycle integration of digital end-to-end engineering activities

across the entire value chain of both the product and the associated systems.

The Emergence of Accidental Autonomy 5

3.1 Accidental Autonomy

In a connected system, automation creates a dramatic increase in the volume of di-
gital data and flow of that digital data around system elements and a concomitant
decrease in understanding of the context and limitations of that data. Change is a
crucial factor in creating the potential for accidental autonomy. At one extreme
are revisions of an existing product or model, as with an aircraft. At the other are
a series of incremental changes in the pre-existing operational context. Existing
boundaries may not constrain these new functionalities. An actor may become re-
liant on data produced by another actor (passed across one or more boundaries),
with little ability to influence the data stream they have become reliant on. At the
same time, reliance on automated decision-making increases.

Accidental autonomy results when differences between models of use, and
context of use, are not sufficiently well understood in all operational modes. This
includes misuse. The true nature of its inclusion in the system is omitted, or
downplayed, in the safety ensurance and assurance process. As a result, insuffi-
cient safety mitigations are provided, and poor human-machine interactions may
occur. We can conceive of accidental autonomy arising between two or more ele-
ments of a system, perhaps as a complete system, or SoS. Within any given con-
text, these elements, systems or SoS have different responsibilities, of which some
will be safety-related. The accidental autonomous system could co-exist with
people-centered activities reliant on a predefined set of processes. A fundamental
assumption is that the people within the system are trained, competent and experi-
enced enough to deliver the required operation (including its safety management);
this implies a maturity of definition and application. Therefore, the provision of
the product or process is dependant on context.

Extending the concept of emergent properties [17] gives rise to the concept of
emergent autonomy. Emergent autonomy is a consequence of the interactions and
relationships between system elements rather than the behaviour of individual ele-
ments. [7] The nature of emergent autonomy is linked to robustness and resilience
and is a critical contribution to safety. Accidental autonomy is a subset of emer-
gent autonomy and may be a result of incomplete development activities. Con-
sider an existing design. This design has been in production and operation for
many years undergoing successive revisions. Each revision ‘refreshes’ the tech-
nology, typically the control systems. The effects of seemingly minor changes be-
come cumulative, giving rise to the safety property of ‘additionality’. Budgetary,
time and project management constraints limit the safety analysis to a subset of
changes. Given these conditions, it is easy to see how the effects of automation
and increasing levels of autonomy are overlooked. For example, an aircraft de-
sign will be revised over many generations of the airframe. It is not unusual for
the aircraft model to evolve over 40 years as with Nimrod (as an extensive modifi-
cation of the de Havilland Comet). We await, with interest, the two accident re-
ports for the Boeing 737 MAX.

6 Alastair Faulkner and Mark Nicholson

For visualisation, we reuse elements of [4]. Fig. 1 illustrates the footprint of
accidental autonomy.

Fig. 1. A layered model for a hierarchy of systems and the footprint of accidental autonomy

How far up the hierarchy could accidental autonomy reach? Potentially, all the
way to the top. Decision support systems are ever more reliant on data analytics,
data science, data engineering and autonomy. Fig. 1 also illustrates the supervi-
sion within the hierarchy.

As autonomy moves through the hierarchy of abstraction, its responsibilities
and authorities change. Similarly, the ability of humans to provide Safety-I [20]
mitigation procedures needs to be addressed. Improved diagnostics, monitoring
and higher-level response, are required. This challenges the ability to design effi-
cient procedures. Furthermore, it impacts on the ability of humans to execute
Safety-II [20] dynamic mitigations, as their mental model of the system and how
they interact with it is flawed.

The implementation strategy must include a means to impose a boundary to the
propagation of the actions of the system and the impact of failures on the avail-
ability and safety of the system. Fig. 2 illustrates how Interface Agreements (IA)
[5] provides that functionality for new and legacy systems.

Fig. 2. Implementation Model for Interface Agreements

The Emergence of Accidental Autonomy 7

A series of interfacing elements can be envisaged. Transformations occur as the
sequence is progressed. One or more actors supervise this series of transforma-
tions. These chains, and associated transformations can occur at multiple levels of
abstraction. As a result, a number of different aspects to Autonomy can be identi-
fied. Any one of these organisational aspects may lead to developers creating ac-
cidental autonomy.

3.2 Vertical Autonomy

Vertical expansion is used to describe an organisation that grows through the ac-
quisition of companies that produce the intermediate goods needed by the busi-
ness. Economic pressures create management and organisational structures that
become more rigid and inflexible. These companies become monolithic, often
creating closed implementations in silos. Over time this inflexibility makes it dif-
ficult for a company to respond to changes in the marketplace. Implementations
based on SoS and IoT offer an opportunity to break free from vertical silos. This
requires vertical integration of flexible and reconfigurable systems within busi-
nesses.

These structures also apply to systems. Consider a basic control system that
consists of input-controller-output. In past implementations, the input would be
wholly dependent on the physical properties of the sensor. For example, a bi-
metallic strip is used to implement the function of a thermostat where specific
temperature causes the differential expansion to deflect enough to close (or open)
the contacts. These devices, once physically co-located, are now implemented us-
ing IoT on remote networks. They may even be replaced by more generic devices
that sense a number of properties. The required data is then mined from the output
of these sensors.

Here we use the following classifications of vertical autonomy:

 backward (upstream)
 forward (downstream)
 balanced (both upstream and downstream)

Fig. 3 illustrates vertical integration; supplier, manufacturer and distributor.

Fig. 3. Supplier, Manufacturer and Distributor

8 Alastair Faulkner and Mark Nicholson

3.2.1 Backward (Upstream)

A manufacturer implements upstream expansion by purchasing a parts supplier.
Upstream autonomy provides more data, command and control of the upstream
systems. For example, accidental upstream autonomy contains an operational
model, that when a candidate production schedule is interpreted, causes it to re-or-
der stock for a future production run without seeking authority (or confirmation)
that the production run would take place. Therefore, accidental upstream auton-
omy is consumption-led and may lag demand. In our control system example, up-
stream autonomy is where the controller reduces the frequency of updates from
the sensor becoming less responsive.

3.2.2 Forward (Downstream)

A manufacturer implements downstream expansion by purchasing the distribution
and sales network. Downstream autonomy allows the manufacturer to only pro-
duce what can be sold. Accidental downstream autonomy might misinterpret de-
mand to produce too much or too little. Therefore, accidental downstream auton-
omy is demand-led. Sudden (step) changes in demand may create instability and
lead to over and under production. In our control system example, downstream
autonomy is where the controller checks the actuator (output), continually moni-
toring the energy required to assert the output has occurred. The demand is the
energy (effort) required to assert the output.

3.2.3 Balanced (both Upstream and Downstream)

A manufacturer implements balanced expansion by purchasing a suppliers, distri-
bution and sales network. Balanced autonomy contains a balance of consumption,
demand and ‘damping’ (stabilising) elements. Accidental balanced autonomy
may implement complex functions analogous to the Proportional-Integral-Deriva-
tive (PID) pattern in control theory. [21] Other patterns also apply. In our control
system example, balanced autonomy is where the controller adapts to the opera-
tional requirement adjusting the input sensor rate to the best fit to the PID setpoint
and deviations from it. At the same time, the controller calculates a predictive
output anticipating the effort required to apply the output.

3.3 Horizontal Autonomy

A manufacturer implements horizontal integration through changes in capacity
and capability. For example, the introduction of new technology replaces fixed
function machines (manufacturing cells) using reconfigurable workstations clus-

The Emergence of Accidental Autonomy 9

tered in super-cells into a production line. This creates higher capacity and re-
quires integration of the value chains and networks. In our control system exam-
ple, horizontal autonomy combines an array of identical balanced autonomy con-
trollers. Horizontal autonomy uses sensor fusion over the input devices and load-
balancing across the outputs. This implies the use of supervision [11] over the ar-
ray of controllers.

The above characterisation implies that horizontal data transformation and ver-
tical abstraction transformations (along the lines of fig. 1) need to be considered
when identifying Critical Control Points (CCP) to ensure that development pro-
cesses do not introduce accidental autonomy. [22]

Paths (physical product or data) will incorporate CCP and may involve multiple
sources and multiple sinks. These issues are compounded when these paths are
dynamic. This dynamism is not limited to changing numbers of sources or sinks
or processes but also changes in demand (capacity) and availability. Paths may be
transient synthesised on demand for single-use and then discarded. Incident in-
vestigation is eased where these CCPs provide controls and logged data. There-
fore, CCPs provide evidence about the actions of the system, including accidental
autonomy.

To implement dynamic paths, one analogy would be to use a standardised li-
brary of elements across a node and link network. This provides one means of im-
plementing redundancy where nodes are unavailable. In network theory, links can
be assigned a weight; path management is used to identify a route with the least
weight. Accidental autonomy need not be persistent; it may arise from transient
elements of the dynamic formation of the system. Therefore, implementation re-
quires the definition of an Identity Model and Security Model.

3.4 Product-line Autonomy

A product line can be defined as a set of systems sharing a common, managed set
of features that satisfy specific needs and are developed from a common set of
core assets in a prescribed way. [23, 24] A product-line [25] development em-
ploys a life-cycle model and the process it contains to develop the system defini-
tion, into the system. The defined set of features can be reused within defined fit-
form-function [16] contexts.

Accidental introduction of Autonomy via product lines presents two potential
threats; that the fit-form-function replacement introduces residual and unsecured
functionality, and secondly that the system has grown organically and cannot sup-
port digital end-to-end engineering activities with a reasonable certainty of out-
come. This may lead to the accidental autonomy being presented with a range, se-
quence and timings in an ‘unfamiliar’ environment that it cannot manage safely.
The autonomy cannot rely on the human to retrieve the situation.

10 Alastair Faulkner and Mark Nicholson

4 Cyber Physical System Threats

When deciding what steps to take to prevent and respond to threats, we might im-
mediately focus on the threat of hacking. However, the range of threats systems
face is much broader than this, encompassing anything that can adversely affect
their operation, including theft, destruction, disclosure, modification or unautho-
rised access.

We modify the definition of threat [26] to be ‘an actor likely to cause one or
more hazards.’ This definition includes autonomy within the actor. Changes in
system context require resilience and robustness from the autonomy to withstand
threats arising from identity, security and sneak attributes.

4.1 Identity

‘Identity’ should be a unique labelling of attributes of the object (system resource)
being accessed and of the actor requesting access in a given context. Threats arise
from identity error, duplicate and missing identities. A malicious, deliberate iden-
tity-based (spoofing) act could be used as a means to gain control of the system.
One means to counter identity-based threats is the use of a formalised and man-
aged ‘identity model’. An identity model is a scheme for specifying and enforcing
identity policies. An identity model is a key aspect of the security model.

Both emergent and accidental autonomy are sensitive to error, omission or du-
plicate identities, especially in dynamically reconfigurable systems as changes in
system behaviour presents significant system safety management challenges.
These issues are compounded where a system uses joiners and leavers as one
means to satisfy operational demand, including capability and capacity. It cannot
be assumed that identity theft applies only to users as it applies equally to actors,
systems, assets, data and data paths.

4.2 Security

A security model is a scheme for specifying and enforcing security policies. A se-
curity model uses a formal model of access rights. Authorisation is implemented
using identity and enforced through authentication. Potentially, failures of cyber-
security provide the intruder with unbridled access to a system. Identity and its
management is a critical feature of both Data Safety and information security.

Should each instance of autonomy be required to be assigned its own unique
identity? Low-level systems often do not implement a security or identity model.
Autonomy in such systems can act without authorisation, often acting with ‘super-

The Emergence of Accidental Autonomy 11

user’ rights. More extensive systems required security models, and therefore,
each actor or autonomy requires one or more identities.

4.3 Sneak Attributes

Systems may contain sneak (or hidden) attributes that may cause unwanted action
or inhibit desired functions. [27] Sneak attributes arise where the physical realisa-
tion contains many more characteristics than the logical representation. Examina-
tion of simple network switches reveals capabilities to separate network traffic us-
ing configuration data. Errors in the configuration may permit ‘mixed network’
traffic, compromising the intended separation, and creating additional paths be-
tween entities.

These may include:

 Sneak paths: unintended paths within a system and its external interfaces.
 Sneak timing: unexpected interruption or enabling of a [function or service]

due to timing problems which may cause or prevent the activation or inhibition
of a function [or service] at an unexpected time.

 Sneak indications: undesired activation or deactivation of a [status] indication
which may cause an ambiguous or false display of system operating conditions.

 Sneak identity: incorrect or ambiguous identity of a [function or service] which
may cause actor error through inappropriate control activation.

As complex networks of autonomous actors embedded within systems emerge the
ability to create accidental autonomy via a sneak, increases.

5 Discussion

There are many examples of automatic systems, from the washing machine to au-
tomobile automatic transmissions. The degree of possible automation increases
by using SoS and IoT technologies. Economic pressures to increase efficiencies,
such as fuel economy, drive change to the foundations of existing designs and the
organisations that develop and operate them. The increased reliability, availabil-
ity, capability and real-time response of control systems allow the designer to ex-
plore inherently unstable designs. These unstable designs offer potential opera-
tional efficiencies. This involves a design change from stable towards the edge of
instability, where additional means are required to stay within the stability enve-
lope. One means to achieve this is autonomy. Accidental autonomy contributes
to the emergent property of incremental additionality. It may be unintentional, or
unexpected, but it does not happen by chance. These emergent properties and au-

12 Alastair Faulkner and Mark Nicholson

tonomies are systematic. Their behaviours are repeatable and may be inclusions
(impurities) from an incomplete development.

This paper has outlined how autonomy is multi-dimensional. It follows that ac-
cidental autonomy is also multi-dimensional. The system safety question, ‘how
could this possibly go wrong?’ is more relevant than ever. Early indicators of the
Boeing 737 MAX accidents shows how organisational structures can interact with
economic and engineering factors to create the potential for accidental autonomy.
They illustrate how changes to a pre-existing model create a change in context
where the users (pilots) are unaware of the underlying nature of change. One ap-
proach to addressing accidental autonomy is to increase the ability of pilots to ad-
dress the unexpected. This will require them to become experts in diagnosing and
addressing such issues. This higher competency is required to detect, diagnose and
formulate a course of action during the operational event. This assumes that the
actions of the user can result in a positive outcome. The more dimensions auton-
omy occupies, the more extensive, the more difficult - real-time - diagnosis be-
comes. We can no longer rely on the steady-state being a safe condition. Eco-
nomics and human factors knowledge imply that this is not a credible approach.
As a result, organisational and technical means must be found to identify and ad-
dress potential accidental autonomy issues.

For all forms of autonomy, the permutations of threats, failures and latent haz-
ards may be extensive but are foreseeable. Accidental Autonomy may result in
unintended consequences. Merton [29] asserts that these are outcomes that are not
the ones foreseen and intended by a purposeful action. The operational domain
includes maintenance. What provision should autonomy make to include the
statutory requirements for ‘Permit to Work’ (PtW) and its required ‘Safe System
of Work’ (SSoW) based on one or more ‘Safe Method of Work’ (SMoW)?

Its hidden nature characterises accidental autonomy. Its use to manage the
properties of an underlying design without adequate annunciation and user in-
volvement contributes to the confusion of an ongoing incident. Its actions cannot
be assumed to be benign or malevolent; they will be incomplete, in accidental au-
tonomies pursuit of ill-defined, unknown goals.

6 Conclusion

No single approach resolves the difficulties associated with the essence [9] of en-
gineered and accidental autonomy - those parts concerned with the fashioning of
abstract conceptual structures of high complexity. Greater scale, scope and com-
plexity give rise to an urgency to create strategies to manage the large-scale appli-
cation of techniques and measures. In part, this urgency arises from the reliance
placed on these systems and safety risks associated with their failure. Many sys-
tems are reliant on this connectivity and provide substantially reduced functional-
ity when the interconnectivity fails. In contrast, previous generations of system

The Emergence of Accidental Autonomy 13

implementations operated as islands, separated and protected from external influ-
ences – and in that sense, self-reliant.

The first step in addressing accidental autonomy is recognition of its potential
scale, scope and complexity. It will introduce new failure mechanisms due to dif-
ferences in its required and the actual context. It is a multi-dimensional problem
occupying vertical, horizontal and product-line axes. Its management will require
many interrelated approaches and their associated techniques and measures. Its
independence also provides new forms of latent failures. For example, two or
more learning autonomous elements may adapt in different ways to changes in
their operational environment. The new behaviours may introduce conflict and
cause instability over many learning cycles. There is no guarantee that these dif-
ferences will resolve into a stable state. Such variations will only be manifest in
an incident.

7 References

1. Autonomy – “freedom from external control or influence; independence”
www.lexico.com/en/definition/autonomy (visited 10 October 2019)

2. Context “The circumstances that form the setting for an event, statement, or
idea, and in terms of which it can be fully understood.” www.lexico.com/en/
definition/context (visited 10 October 2019)

3. Action - “fact or process of doing something, typically to achieve an aim”,
www.lexico.com/en/definition/action (visited 10 October 2019)

4. Alastair Faulkner and Mark Nicholson, “An Assessment Framework for
Data-Centric Systems”, Proceedings of the Twenty-Second Safety-Critical
Systems Symposium, Brighton, UK. Edited by Chris Dale and Tom Ander-
son. ISBN 978-1491263648. Safety Critical Systems Club, 2014

5. Alastair Faulkner and Mark Nicholson, “Data-Centric Safety: Challenges,
Approaches, and Incident Investigation”, Elsevier, to be published March
2020, ISBN: 978-0-12-820790-1

6. R. Parasuraman, T. B. Sheridan, and C. D. Wickens. A Model for Types and
Levels of Human Interaction with Automation. IEEE Transactions on Sys-
tems, Man, Cybernetics—Part A, Vol. 30, No. 3, 2000

7. P. Checkland. Systems Thinking, Systems Practice. 1981 John Wiley & Sons
8. System –“A set of things working together as parts of a mechanism or an in-

terconnecting network; a complex whole.” www.lexico.com/en/definition/
system (visited 10 October 2019)

9. BKCASE Governance and Editorial Board. Guide to the Systems Engineer-
ing Body of Knowledge (SEBoK). 2017

10. Frederick P. Brooks. No Silver Bullet — Essence and Accident in Software
Engineering. Proceedings of the IFIP Tenth World Computing Conference,
1986, pages 1069–1076

14 Alastair Faulkner and Mark Nicholson

11. Supervision - “action of supervising someone or something” www.lexico.-
com/en/definition/supervision (visited 10 October 2019)

12. Autonomous - “denoting or performed by a device capable of operating
without direct human control.” www.lexico.com/en/definition/autonomous
(visited 10 October 2019)

13. Automaton – “machine which performs a range of functions according to a
predetermined set of coded instructions” www.lexico.com/en/definition/auto-
maton (visited 10 October 2019)

14. Automatic – “(of a device or process) working by itself with little or no dir -
ect human control.” www.lexico.com/en/definition/automatic (visited 10 Oc-
tober 2019)

15. Automation – “use or introduction of automatic equipment in a manufactur-
ing or other process or facility.” www.lexico.com/en/definition/automation
(visited 10 October 2019)

16. Morris, R. The fundamentals of product design. AVA Publishing. 2009
17. SEBoK (Guide to the Systems Engineering Body of Knowledge): Emer-

gence, www.sebokwiki.org/wiki/Emergence (visited 10 October 2019)
18. David Leal-Ayala, Jennifer Castañeda-Navarrete and Carlos López-Gómez,

OK Computer? -The safety and security dimensions of Industry 4.0, Global
Manufacturing and Industrialisation Summit (GMIS) and Lloyd’s Register
Foundation (LRF). 2019

19. Mario Hermann, Tobias Pentek and Boris Otto, “Design Principles for Indus-
trie 4.0 Scenarios” in 49th Hawaii International Conference on System Sci-
ences (HICSS), pages 3928-3937, 2016

20. Erik Hollnagel. Safety-I and Safety-II. ISBN 978-1472423085. Routledge,
2014

21. Araki, M. "PID Control", Control Systems, Robotics and Automation, Vol II,
2011

22. Mark E. J. Newman. Networks: an Introduction. Oxford, 2010
23. Paul Clements and Linda Northrop. Software Product Lines: Practices and

Patterns. Addison-Wesley Professional, 2001
24. Linda Northrop and Paul Clements. A Framework for Software Product Line

Practice. Software Engineering Institute, 2012
25. André de Oliveira et al. Supporting the Automated Generation of Modular

Product Line Safety Cases. Volume Theory and Engineering of Complex
Systems and Dependability. ISBN 978-3-319-19215-4. Springer Interna-
tional Publishing, 2015, pages 319–330

26. Threat - “A person or thing likely to cause damage or danger.” www.lexico.-
com/en/definition/threat (visited 10 October 2019)

27. MIL-STD-785B Reliability Program for Systems and Equipment Develop-
ment and Production. US Department of Defence, 1980.

28. Accidental – “happening by chance, unintentionally, or unexpectedly”
www.lexico.com/en/definition/accidental (visited 10 October 2019)

29. Robert K. Merton "The Unanticipated Consequences of Purposive Social Ac-
tion" American Sociological Review. 1 (6): 895. 1936

	1 Introduction
	2 System as the Fundamental Concept
	3 Autonomy
	3.1 Accidental Autonomy
	3.2 Vertical Autonomy
	3.2.1 Backward (Upstream)
	3.2.2 Forward (Downstream)
	3.2.3 Balanced (both Upstream and Downstream)

	3.3 Horizontal Autonomy
	3.4 Product-line Autonomy

	4 Cyber Physical System Threats
	4.1 Identity
	4.2 Security
	4.3 Sneak Attributes

	5 Discussion
	6 Conclusion
	7 References

